Finding Lie groups that reduce the order of discrete dynamical systems
نویسندگان
چکیده
Discrete dynamical systems of the form xm+1 = f (xm) are considered, where xm is an n-component vector. Equations X = f (x) define a mapping f from an n-dimensional projective space into itself. Each component of f is a rational function, i.e. a ratio of polynomials in n dynamical variables. Maeda showed that when f commutes with each transformation gα of a Lie group, a reduction in the order of the dynamical system results. Given a discrete dynamical system, the difficulty is to find its continuous symmetries. We present a way of using f -invariant sets to find these symmetries. The approach taken is to arrange groups in order of increasing complication and to characterize the set of dynamical systems admitting each group. Criteria are given for recognizing and reducing the order of systems admitting subgroups of the projective general linear group in n variables, PGL(n), or certain Lie subgroups of the Cremona group of birational transformations in n variables, Cn. Quispel et al demonstrated the use of canonical group variables for achieving this reduction. We develop canonical coordinates for several groups with elementary Lie algebras and demonstrate reduction of order in each case. Results are used to reduce the order of several examples of recursion formulae taken from the literature on renormalizable lattice models.
منابع مشابه
The Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion
In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...
متن کاملOn the Notion of Fuzzy Shadowing Property
This paper is concerned with the study of fuzzy dynamical systems. Let (XM ) be a fuzzy metric space in the sense of George and Veeramani. A fuzzy discrete dynamical system is given by any fuzzy continuous self-map dened on X. We introduce the various fuzzy shad- owing and fuzzy topological transitivity on a fuzzy discrete dynamical systems. Some relations between this notions have been proved.
متن کاملDetermination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملLI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کامل